B.A/B.Sc $6^{\text {th }}$ Semester (Honours) Examination, 2020 (CBCS)
 Subject: Mathematics
 Course: BMH6CC14
 (Ring Theory and Linear Algebra-II)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any six questions:
$6 \times 5=30$
(a) Give an example of an ideal in $\mathbb{Z}[x]$ which is not a principal ideal.
(b) Prove that the polynomial $f(x)=1+x+x^{2}$ is irreducible over \mathbb{Z}_{2}. 5
(c) Prove that a commutative ring R with unity is a field when $R[x]$ is a principal ideal domain. 5
(d) Prove that a nonzero proper ideal of a principal ideal domain R is prime if and only if it is maximal.
(e) If V is a finite dimensional vector space, then show that there exists a canonical isomorphism from V onto $V^{* *}$.
(f) Prove that any orthogonal set of non-null vectors in an inner product space is linearly independent.
(g) Apply Gram Schmidt process to the set of vectors $\{(1,0,1),(1,0,-1),(1,3,4)\}$ to obtain an orthonormal basis for \mathbb{R}^{3} with the standard inner product.
(h) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation, defined by $T(x, y, z)=(2 x+y-2 z, 2 x+$ $3 y-4 z, x+y-z)$. Find the eigen values of T.
2. Answer any three questions:
(a) (i) Determine all the units of the ring $\mathbb{Z}[i]$ of Gaussian integers.
(ii) If α and β be vectors in an inner product space, then show that

$$
\|\alpha+\beta\|^{2}+\|\alpha-\beta\|^{2}=2\|\alpha\|^{2}+2\|\beta\|^{2}
$$

(b) (i) Show that 3 is irreducible but not prime in $\mathbb{Z}[i \sqrt{5}]=\{a+i b \sqrt{5}: a, b \in \mathbb{Z}\}$.
(ii) Verify Cayley-Hamilton Theorem for the matrix $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 5\end{array}\right]$.
(c) (i) Let A be an $n \times n$ symmetric matrix over \mathbb{R} and suppose that \mathbb{R}^{n} is equipped with the standard inner product. If $\langle u, A u\rangle=\langle u, u\rangle, \forall u \in \mathbb{R}^{n}$, then prove that $A=I_{n}$.
(ii) Prove that $F[x]$ is an Euclidian domain for a field F.
(d) (i) Suppose W_{1} and W_{2} are two subspaces of a finite dimensional vector space V. Prove that $\left(W_{1}+W_{2}\right)^{0}=W_{1}{ }^{0} \cap W_{2}{ }^{0}$, where W^{0} is annihilator of W .
(ii) Let $\mathbb{Z}[\sqrt{3}]=\{a+b \sqrt{3}: a, b \in \mathbb{Z}\}$. Then prove that $\mathbb{Z}[\sqrt{3}]$ is FD.
(e) (i) Suppose $V=\{a+b t: a, b \in \mathbb{R}\}$, the vector space of real polynomials of degree ≤ 1. Let $\theta_{1}(f(t))=\int_{0}^{1} f(t) d t$ and $\theta_{2}(f(t))=\int_{0}^{2} f(t) d t$. Show that $S=\left\{\theta_{1}, \theta_{2}\right\}$ is a basis of V^{*}. Find a basis of V for which S is the dual basis.
(ii) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear operator whose matrix representation with respect to the standard ordered basis $\{(1,0),(0,1)\}$ of \mathbb{R}^{2} is $\left[\begin{array}{cc}1 & 5 \\ 0 & -2\end{array}\right]$. Find the minimal polynomial of T. $6+4$

